Skip to main content
Loading
Sign In
Cart
Home
Foundation
Toggle search
Toggle navigation
Keyword Search
About Us
Toggle
Mission Vision History
Who are our members
Member Benefits
Why IIAR?
Board of Directors
IIAR Past Chairs
IIAR Committees
Allied Associations
About NH3 Refrigeration
Advertise with IIAR
State of the Industry
IIAR Green Paper
Join IIAR
Toggle
Store
Toggle
Purchase Standards, Industry Books, Posters
Technical Papers
Access Publication Resources
Events
Toggle
Annual Conference
Technical Paper Submission
Espanol Technical Paper Submissions
PDH Manager
International Events
Hub and Space
International
Toggle
Chapters
International Committee
International Alliance Program
International Events
Spanish Language Standards
Technology & Standards
Toggle
Standards Review
Standards Interpretations
Ventilation Analysis Tool
Government & Code
Toggle
Government Portal
First Responder Portal
Education
Toggle
IIAR Learning Management System
IIAR 2 Certificate Course
IIAR 2 Curso de Certificado
IIAR 4 Curso de Certificado
IIAR 6 Certificate Course
IIAR 6 Curso de Certificado
IIAR 9 Certificate Course
IIAR 9 Curso de Certificado
ARM Certificate Course
PSM RMP Certificate Course
PHA Certificate Course
Refrigeration Training Series
IIAR Webinars
Condenser Magazine
Toggle
Condenser (English)
Condenser Selects (Spanish)
Members Only
Toggle
Member Directory
Condenser Issues
eLibrary
IIAR Communities
Webinars
COVID19
Skip breadcrumb navigation
Comparison of Various Methods of Mitigating Over Pressure In
Comparison of Various Methods of Mitigating Over Pressure Induced Release Events Involving Ammonia Refrigeration Using Quantitative Risk Analysis (2014)-The objective of this project was to determine the effectiveness of different methods of mitigating ammonia releases through a pressure relief device in an ammonia refrigeration system. A literature review was conducted and among the methods discovered, five were selected for further study and include: discharge into a tank containing standing water, discharge into the atmosphere, discharge into a flare, discharge into a wet scrubber, and an emergency pressure control system. All the methods were compared applying quantitative risk analysis where failure rates of each system were combined with ammonia dispersion modeling and with the monetized health effects of a system’s failure to contain an ammonia release. It was determined that the ammonia release height had the greatest influence on the downwind cost impact relative to the other variables, including weather conditions and release from multiple sources. While the discharge into a tank containing standing water was determined to have the lowest failure rate, the other discharge methods can be designed to have comparable failure rates and comparable release consequent cost. The emergency pressure control system, now required by codes, used in conjunction with the other ammonia release mitigation systems, was determined to be very effective.
Discounted member price:
30.00
Your price:
45.00
You could save:
33.3%
Quantity:
Similar products
No products found
Copyright © International Institute of Ammonia Refrigeration (IIAR).
{1}
##LOC[OK]##
{1}
##LOC[OK]##
##LOC[Cancel]##
{1}
##LOC[OK]##
##LOC[Cancel]##