Skip to main content
Loading
Sign In
Cart
Home
Foundation
Toggle search
Toggle navigation
Keyword Search
About Us
Toggle
Mission Vision History
Who are our members
Member Benefits
Why IIAR?
Board of Directors
IIAR Past Chairs
IIAR Committees
Allied Associations
About NH3 Refrigeration
Advertise with IIAR
State of the Industry
IIAR Green Paper
Join IIAR
Toggle
Store
Toggle
Purchase Standards, Industry Books, Posters
Technical Papers
Access Publication Resources
Events
Toggle
Annual Conference
Technical Paper Submission
Espanol Technical Paper Submissions
PDH Manager
International Events
Hub and Space
International
Toggle
Chapters
International Committee
International Alliance Program
International Events
Spanish Language Standards
Technology & Standards
Toggle
Standards Review
Standards Interpretations
Ventilation Analysis Tool
Government & Code
Toggle
Government Portal
First Responder Portal
Education
Toggle
IIAR Learning Management System
IIAR 2 Certificate Course
IIAR 2 Curso de Certificado
IIAR 4 Curso de Certificado
IIAR 6 Certificate Course
IIAR 6 Curso de Certificado
IIAR 9 Certificate Course
IIAR 9 Curso de Certificado
ARM Certificate Course
PSM RMP Certificate Course
PHA Certificate Course
Refrigeration Training Series
IIAR Webinars
Condenser Magazine
Toggle
Condenser (English)
Condenser Selects (Spanish)
Members Only
Toggle
Member Directory
Condenser Issues
eLibrary
IIAR Communities
Webinars
COVID19
Skip breadcrumb navigation
Industrial Refrigeration Vapor Valve Sizing • An Updated App
Industrial Refrigeration Vapor Valve Sizing • An Updated Approach (2015)-Calculation of pressure drop in vapor flows through valves has made substantial advancements in the past half-century. Currently-used methods for determining pressure drop through valves with vapor flows (assumed to be either saturated or superheated refrigerant vapor states) were identified and evaluated. Attempts at providing a standard means for industrial ammonia system engineers to calculate vapor valve pressure drops have been undertaken in the past, notably by the IIAR. At present, the IIAR makes available an explicit set of equations, based on CV , and provided in the Ammonia Refrigeration Piping Handbook (2004). It is often the case that in HVAC&R, valves are sized based on capacity in Tons of Refrigeration. This does not allow for accurate sizing for types of valves not rated in those terms and will often not predict the correct valve for a specific application. This study recommends the use of widely-standardized methods for calculating vapor flow valve pressure drops be adopted in the industrial refrigeration industry on the part of engineers and contractors.
Discounted member price:
30.00
Your price:
45.00
You could save:
33.3%
Quantity:
Similar products
No products found
Copyright © International Institute of Ammonia Refrigeration (IIAR).
{1}
##LOC[OK]##
{1}
##LOC[OK]##
##LOC[Cancel]##
{1}
##LOC[OK]##
##LOC[Cancel]##