Skip to main content
Loading
Sign In
Cart
Home
Foundation
Toggle search
Toggle navigation
Keyword Search
About Us
Toggle
Mission Vision History
Who are our members
Member Benefits
Why IIAR?
Board of Directors
IIAR Past Chairs
IIAR Committees
Allied Associations
About NH3 Refrigeration
Advertise with IIAR
State of the Industry
IIAR Green Paper
Join IIAR
Toggle
Store
Toggle
Purchase Standards, Industry Books, Posters
Technical Papers
Access Publication Resources
Events
Toggle
Annual Conference
Technical Paper Submission
Espanol Technical Paper Submissions
PDH Manager
International Events
Hub and Space
International
Toggle
Chapters
International Committee
International Alliance Program
International Events
Spanish Language Standards
Technology & Standards
Toggle
Standards Review
Standards Interpretations
Ventilation Analysis Tool
Government & Code
Toggle
Government Portal
First Responder Portal
Education
Toggle
IIAR Learning Management System
IIAR 2 Certificate Course
IIAR 2 Curso de Certificado
IIAR 4 Curso de Certificado
IIAR 6 Certificate Course
IIAR 6 Curso de Certificado
IIAR 9 Certificate Course
IIAR 9 Curso de Certificado
ARM Certificate Course
PSM RMP Certificate Course
PHA Certificate Course
Refrigeration Training Series
IIAR Webinars
Condenser Magazine
Toggle
Condenser (English)
Condenser Selects (Spanish)
Members Only
Toggle
Member Directory
Condenser Issues
eLibrary
IIAR Communities
Webinars
COVID19
Skip breadcrumb navigation
New Refrigerant Quality Measurement and Demand Defrost Metho
New Refrigerant Quality Measurement and Demand Defrost Methods (2017) - New measurement methods make it possible to design energy-efficient Low Charge Evaporator Systems Controlling both the injection of refrigerant according to the Evaporator load and Defrost cycle “demand defrost” while also increasing safety aspect when using natural refrigerants as Ammonia. Requirements to reduce global warming (GWP) and CO2 emissions lead to a desire to use natural refrigerants. This has initiated numerous new efforts and developments worldwide. Application of new measurement principles and design methods in the refrigeration industry may significantly impact the achievement of lower global electrical energy consumption by realizing reductions of 20 to 40% (Jensen, 2015). At the same time safety may be increased by minimizing the refrigerant amount through “LOW CHARGE SYSTEMS” with a charge reduction factor of 30 to 50 times for Ammonia DX systems (Nelson, 2013). The heat transfer coefficient within the evaporators is highly dependent on the flow pattern, mass flux and the Vapor Quality. This paper describes a new sensor system for optimizing Evaporator Control including description of the measurement principle for measuring the phase of refrigerant as Vapor Quality with an “X” sensor that measures degree of dryness and a demand defrost sensor measuring ice build-up on the air cooler surface. The paper also provides information about sensor design, laboratory testing, system design, field testing, application, summary and conclusions.
Discounted member price:
30.00
Your price:
45.00
You could save:
33.3%
Quantity:
Similar products
No products found
Copyright © International Institute of Ammonia Refrigeration (IIAR).
{1}
##LOC[OK]##
{1}
##LOC[OK]##
##LOC[Cancel]##
{1}
##LOC[OK]##
##LOC[Cancel]##