Skip to main content
Loading
Sign In
Cart
Home
Foundation
Toggle search
Toggle navigation
Keyword Search
About Us
Toggle
Mission Vision History
Who are our members
Member Benefits
Why IIAR?
Board of Directors
IIAR Past Chairs
IIAR Committees
Allied Associations
About NH3 Refrigeration
Advertise with IIAR
State of the Industry
IIAR Green Paper
Join IIAR
Toggle
Store
Toggle
Purchase Standards, Industry Books, Posters
Technical Papers
Access Publication Resources
Events
Toggle
Annual Conference
Technical Paper Submission
Espanol Technical Paper Submissions
PDH Manager
International Events
Hub and Space
International
Toggle
Chapters
International Committee
International Alliance Program
International Events
Spanish Language Standards
Technology & Standards
Toggle
Standards Review
Standards Interpretations
Ventilation Analysis Tool
Government & Code
Toggle
Government Portal
First Responder Portal
Education
Toggle
IIAR Learning Management System
IIAR 2 Certificate Course
IIAR 2 Curso de Certificado
IIAR 4 Curso de Certificado
IIAR 6 Certificate Course
IIAR 6 Curso de Certificado
IIAR 9 Certificate Course
IIAR 9 Curso de Certificado
ARM Certificate Course
PSM RMP Certificate Course
PHA Certificate Course
Refrigeration Training Series
IIAR Webinars
Condenser Magazine
Toggle
Condenser (English)
Condenser Selects (Spanish)
Members Only
Toggle
Member Directory
Condenser Issues
eLibrary
IIAR Communities
Webinars
COVID19
Skip breadcrumb navigation
Designing the 1988 Olympic Bob-Sleigh and Luge Facility
Designing the 1988 Olympic Bob-Sleigh and Luge Facility (1989)-The unique features built into the refrigeration system of this facility are: (a) The size of the plant at 4410kW (1255 T) is the largest in the world, because of the unpredictable weather conditions and the long season that it is intended to operate. (GI Precautions taken for the safety of the public are numerous. The use of seal cap valves, all welded construction, elaborate expansion piping to each evaporator, heavy piping insulation that tends to camouflage the piping and the design to avoid public contact with any refrigeration devices except where absolutely necessary. (b) There are over l00km (62 miles) of small bore piping to make up the evaporators including about 90km (56 m.) of 33.4mm (1") pipe, 1000 refrigerant valves from l0mm (1/4") to 350mm (14") nominal with over 600 on the track alone and 175m3 (95T) of liquid refrigeration grade ammonia. (c) The use of direct refrigerant in the evaporators keeps costs down. It is estimated that if an indirect refrigeration system using brine had been used then the plant capacity would had to have been increased by at least 30% and operating power would have increased at least 60%. This would have resulted in an increase in overall track costs. (d) Mixture of reciprocating and screw compressors was used for optimum operating cost and maximum flexibility. (e) Thermosyphon cooling was used for oil cooling of the screw compressors for simplicity and operating cost saving.
Discounted member price:
30.00
Your price:
45.00
You could save:
33.3%
Quantity:
Similar products
No products found
Copyright © International Institute of Ammonia Refrigeration (IIAR).
{1}
##LOC[OK]##
{1}
##LOC[OK]##
##LOC[Cancel]##
{1}
##LOC[OK]##
##LOC[Cancel]##