Skip to main content
Loading
Sign In
Cart
Home
Foundation
Toggle search
Toggle navigation
Keyword Search
About Us
Toggle
Mission Vision History
Who are our members
Member Benefits
Why IIAR?
Board of Directors
IIAR Past Chairs
IIAR Committees
Allied Associations
About NH3 Refrigeration
Advertise with IIAR
State of the Industry
IIAR Green Paper
Join IIAR
Toggle
Store
Toggle
Purchase Standards, Industry Books, Posters
Technical Papers
Access Publication Resources
Events
Toggle
Annual Conference
Technical Paper Submission
Espanol Technical Paper Submissions
PDH Manager
International Events
Hub and Space
International
Toggle
Chapters
International Committee
International Alliance Program
International Events
Spanish Language Standards
Technology & Standards
Toggle
Standards Review
Standards Interpretations
Ventilation Analysis Tool
Government & Code
Toggle
Government Portal
First Responder Portal
Education
Toggle
IIAR Learning Management System
IIAR 2 Certificate Course
IIAR 2 Curso de Certificado
IIAR 4 Curso de Certificado
IIAR 6 Certificate Course
IIAR 6 Curso de Certificado
IIAR 9 Certificate Course
IIAR 9 Curso de Certificado
ARM Certificate Course
PSM RMP Certificate Course
PHA Certificate Course
Refrigeration Training Series
IIAR Webinars
Condenser Magazine
Toggle
Condenser (English)
Condenser Selects (Spanish)
Members Only
Toggle
Member Directory
Condenser Issues
eLibrary
IIAR Communities
Webinars
COVID19
Skip breadcrumb navigation
Improving Effect of Atmospheric Stability Class on Hazard Zo
Improving Effect of Atmospheric Stability Class on Hazard Zone Predictions for an Ammonia Release (1997)-The experimental database supporting heavy gas modeling is quite sparse, because of the expense of full-scale field tests. In particular, the number of experiments conducted at F stability has been woefully inadequate. This is mainly because such tests must be conducted at night or in the early morning under low wind speed conditions. The percentage of time a region experiences F stability ranges typically from 3% to as much as 60% at a pump station on the Alaska pipeline. Fortunately, a large body of experimental data on heavy cloud dispersion has recently been released by the German government in which atmospheric stability is addressed, for the first time, in a reasonably substantial manner. We discuss these findings here, along with a discussion of model improvements generated therefrom and compare our model with two others used to generate the EPA tabulated predictions.
Discounted member price:
30.00
Your price:
45.00
You could save:
33.3%
Quantity:
Similar products
No products found
Copyright © International Institute of Ammonia Refrigeration (IIAR).
{1}
##LOC[OK]##
{1}
##LOC[OK]##
##LOC[Cancel]##
{1}
##LOC[OK]##
##LOC[Cancel]##